
Acta Numerica (2010), pp. 121–158 c© Cambridge University Press, 2010

doi:10.1017/S0962492910000024 Printed in the United Kingdom

Binary separation and training
support vector machines∗

Roger Fletcher†

Department of Mathematics,
University of Dundee,
Dundee DD1 4HN, UK

E-mail: fletcher@maths.dundee.ac.uk

Gaetano Zanghirati‡

Department of Mathematics and Math4Tech Center,
University of Ferrara,
44100 Ferrara, Italy

E-mail: g.zanghirati@unife.it

We introduce basic ideas of binary separation by a linear hyperplane, which
is a technique exploited in the support vector machine (SVM) concept. This
is a decision-making tool for pattern recognition and related problems. We
describe a fundamental standard problem (SP) and show how this is used in
most existing research to develop a dual-based algorithm for its solution. This
algorithm is shown to be deficient in certain aspects, and we develop a new
primal-based SQP-like algorithm, which has some interesting features. Most
practical SVM problems are not adequately handled by a linear hyperplane.
We describe the nonlinear SVM technique, which enables a nonlinear sepa-
rating surface to be computed, and we propose a new primal algorithm based
on the use of low-rank Cholesky factors.

It may be, however, that exact separation is not desirable due to the pres-
ence of uncertain or mislabelled data. Dealing with this situation is the main
challenge in developing suitable algorithms. Existing dual-based algorithms
use the idea of L1 penalties, which has merit. We suggest how penalties can be
incorporated into a primal-based algorithm. Another aspect of practical SVM
problems is often the huge size of the data set, which poses severe challenges
both for software package development and for control of ill-conditioning.
We illustrate some of these issues with numerical experiments on a range of
problems.

∗ An early version of this paper was presented at the 22nd Dundee Numerical Analysis
Conference NA07, June 2007.

† Partially supported by the University of Ferrara under the Copernicus Visiting Profes-
sor Programme 2008.

‡ Partially funded by the HPC-EUROPA initiative (RII3-CT-2003-506079), with the
support of the European Community Research Infrastructure Action under the FP6
‘Structuring the European Research Area’ Programme.

122 R. Fletcher and G. Zanghirati

CONTENTS

1 Introduction 122
2 Linear separation 126
3 KT conditions for the standard problem 130
4 A new SQP-like algorithm 131
5 Nonlinear SVMs 136
6 Numerical experience 139
7 Uncertain and mislabelled data 148
8 Additional issues 151
9 Conclusion 152
References 153

1. Introduction

In this paper we deal with the problem of separating two given non-empty
clusters within a data set of points vi ∈ R

n, i = 1, . . . , m. To distinguish
between the clusters we assign a label ai to each point which is either +1
or −1. In its most basic form the problem is to find a hyperplane

f(v) = wT v + b = 0 ‖w‖ = 1 (1.1)

in R
n which best separates the two clusters, with the ‘plus’ points on the

plus side of the hyperplane (that is, f(vi) > 0 ∀i : ai = +1) and the ‘minus’
points on the minus side. This is referred to as linear separation. If the
points cannot be separated we seek a solution which provides the minimum
overlap in a certain sense.

This basic notation is developed in the support vector machine (SVM)
concept (Vapnik 1998), which is a decision-making tool for pattern recogni-
tion and related problems. Training an SVM is the activity of using existing
data (the vi) to fix the parameters in the SVM (w and b) in an optimal way.
An important concept is the existence of so-called support vectors, which
are the subset of points that are active in defining the separation. Subse-
quently the SVM would be used to classify a previously unseen instance
v by evaluating the sign of the classification function f(v). In practice,
binary separation very rarely occurs in a form which permits satisfactory
separation by a hyperplane. Most interest therefore lies in what is referred
to as nonlinear SVMs, in which the points are separated by a nonlinear
hypersurface which is the zero contour of a nonlinear classification function.

In Section 2 of the paper we first develop the basic formulation of linear
separation, and observe that it leads to a certain optimization problem
which is a linear programming problem plus a single nonlinear constraint,
which we refer to as the standard problem. The usual approach at this stage
is to transform this nonlinear programming (NLP) problem into a convex

Binary separation and training SVMs 123

quadratic programming (QP) problem, and we provide a simple explanation
of how this transformation is carried out. Unfortunately this transformation
is only valid when the data are linearly separable. The convex QP has a
dual which is a QP with non-negative variables and a single linear constraint.
This is the approach commonly taken by most existing research into SVMs.
The non-separable case is handled by adding penalties, usually of an L1

type, which is readily achieved by imposing simple upper bounds on the
dual variables, and may lead to some data points being misclassified.1

However, we point out some unsatisfactory features of the usual approach,
and give some attention to solving the standard problem (SP) directly.
Based on some aspects of the KT conditions, we are able, in Sections 3
and 4, to propose a new SQP-like algorithm for its solution. Unusually
for an NLP solver, our algorithm maintains feasibility throughout, and we
prove that it monotonically increases the objective function without any
need for line search, trust-region or filter strategies. Also, we observe that
the algorithm terminates at a local solution, for which at present we do not
have a good explanation.

In Section 5 we provide a simple introduction to the nonlinear SVM con-
cept. We show that an approach to solving nonlinear problems by means of
the new SQP-like algorithm is entirely practical, and we give some details
of suitable strategies. The concept of low-rank Cholesky factors is explained
and plays an important part. Some new proposals as to how pivots may be
chosen are suggested.

In Section 6 we report preliminary numerical experiments on both ran-
domly generated and well-known benchmark data sets for binary classifica-
tion, where the focus is on how well the proposed approach works, rather
than on running time performance.

The goal of Section 7 is to explore briefly some of the critical situations
that can happen due to ‘bad’ data. We show by examples that in cases
where the training data contain points that are mislabelled, obtaining the
exact solution of the SP is possible, but provides an undesirable separating
contour. This is one of the main reasons for introducing the regularization
term in the dual, which has interpretations in the context of Statistical
Learning. However, we try to suggest a different way to look at this problem
in the context of our primal approach.

In Section 8 we briefly recall some of the most relevant issues related
to the probabilistic view of SVMs, which we do not otherwise consider
in this paper. Section 9 contains some final discussions and directions of
future work.
1 We distinguish between a data point v being mislabelled when the incorrect label has

been assigned a priori, and misclassified when, as a result of an SVM calculation, v
falls on the wrong side of the separating surface, so that its label is opposite to the sign
of f(v) in (1.1).

124 R. Fletcher and G. Zanghirati

There is an extensive literature dealing with binary separation (or binary
classification) and SVMs. When the best hyperplane is defined in a max-
min sense (as in Section 2 here), we have the maximal margin problem, for
which a number of methods have been proposed in the past, ranging from
regression to neural networks, from principal components analysis (PCA) to
Fisher discriminant analysis, etc.; see, e.g., Hastie, Tibshirani and Friedman
(2001) and Shawe-Taylor and Cristianini (2004). Also, when binary classi-
fiers have to be constructed, additional probabilistic properties are usually
considered together with the separating properties (we say more on this in
the final discussion). The SVM approach is one of the most successful tech-
niques so far developed; see Burges (1998), Osuna, Freund and Girosi (1997)
and Cristianini and Shawe-Taylor (2000) for good introductions. This ap-
proach has received increasing attention in recent years from both the the-
oretical and computational viewpoints. On the theoretical side, SVMs have
well-understood foundations both in probability theory and in approxima-
tion theory, the former mainly due to Vapnik (see, for instance, Vapnik
(1998) and Shawe-Taylor and Cristianini (2004)), with the latter being de-
veloped by different researchers with strong connections with regularization
theory in certain Hilbert spaces; see, for instance, Evgeniou, Pontil and
Poggio (2000), Cucker and Smale (2001), De Vito, Rosasco, Caponnetto,
De Giovannini and Odone (2005), De Vito, Rosasco, Caponnetto, Piana
and Verri (2004) and Cucker and Zhou (2007), and the many references
therein. On the computational side, the SVM methodology has attracted
the attention of people from the numerical optimization field, given that the
solution of the problem is most often sought by solving certain quadratic
programming (QP) problems. Many contributions have been given here
by Boser, Guyon and Vapnik (1992), Platt (1999), Joachims (1999), Chang,
Hsu and Lin (2000), Mangasarian (2000), Lee and Mangasarian (2001a), Lin
(2001a, 2001b), Mangasarian and Musicant (2001), Lin (2002), Keerthi and
Gilbert (2002), Hush and Scovel (2003), Caponnetto and Rosasco (2004),
Serafini, Zanghirati and Zanni (2005), Hush, Kelly, Scovel and Steinwart
(2006), Zanni (2006) and Mangasarian (2006), just to mention a few. Low-
rank approximations to the Hessian matrix (such as we use in Section 5)
have also been used, for example, by Fine and Scheinberg (2001), Gold-
farb and Scheinberg (2004), Keerthi and DeCoste (2005), Keerthi, Chapelle
and DeCoste (2006) and Woodsend and Gondzio (2007a, 2007b), and the
interested reader can find an extensive updated account of the state of the
art in Bennett and Parrado-Hernández (2006). Moreover, real-world ap-
plications are often highly demanding, so that clever strategies have been
developed to handle large-scale and huge-scale problems with up to mil-
lions of data points; see, for instance, Ferris and Munson (2002), Graf,
Cosatto, Bottou, Dourdanovic and Vapnik (2005), Zanni, Serafini and Zan-
ghirati (2006) and Woodsend and Gondzio (2007a). These strategies are

Binary separation and training SVMs 125

implemented in a number of effective software packages, such as SMO
(Platt 1998, Keerthi, Shevade, Bhattacharyya and Murthy 2001, Chen, Fan
and Lin 2006), SVMlight (Joachims 1999), LIBSVM (Chang and Lin 2001),
GPDT (Serafini and Zanni 2005), SVM-QP (Scheinberg 2006), SVMTorch
(Collobert and Bengio 2001), HeroSVM (Dong, Krzyzak and Suen 2003,
2005), Core SVM (Tsang, Kwok and Cheung 2005), SVM-Maj (Groenen,
Nalbantov and Bioch 2008), SVM-HOPDM (Woodsend and Gondzio 2007a),
LIBLINEAR (Fan, Chang, Hsieh, Wang and Lin 2008), SVMperf (Joachims
2006), LASVM (Bordes, Ertekin, Weston and Bottou 2005), LS-SVMlab
(Suykens, Van Gestel, De Brabanter, De Moor and Vandewalle 2002), LIB-
OCAS (Franc and Sonnenburg 2008a) and INCAS (Fine and Scheinberg
2002). Furthermore, out-of-core computations are considered by Ferris and
Munson (2002). Also, effective parallel implementations exist: PGPDT
(Zanni et al. 2006; multiprocessor MPI-based version of the GPDT scheme,
available at http://dm.unife.it/gpdt), Parallel SVM (Chang et al. 2008),
Milde (Durdanovic, Cosatto and Graf 2007), Cascade SVM (Graf et al.
2005), BMRM (Teo, Le, Smola and Vishwanathan 2009; based on the
PETSc and TAO technologies), and SVM-OOPS (Woodsend and Gondzio
2009; a hybrid MPI-OpenMP implementation based on the OOPS solver;
see also Ferris and Munson (2002) and Gertz and Griffin (2005) for other
interior-point-based parallel implementations). Moreover, some codes ex-
ist for emerging massively parallel architectures: PSMO-GPU (Catanzaro,
Sundaram and Keutzer 2008) is an implementation of the SMO algorithm on
graphics processing units (GPUs), while PGPDT-Cell (Wyganowski 2008)
is a version of PGPDT for Cell-processor-based computers. Software repos-
itories for SVM and other Machine Learning methods are mloss.org and
kernel-machines.org.

The relevance of this subject is demonstrated by the extremely wide range
of applications to which SVMs are successfully applied: from classical fields
such as object detection in industry, medicine and surveillance, to text cat-
egorization, genomics and proteomics, up to the most recently emerging
areas such as brain activity interpretation via the estimation of functional
magnetic resonance imaging (fMRI) data (Prato et al. 2007). The list is con-
tinuously growing. Finally, we should mention that the SVM approach is
not only used for binary classifications: a number of variations address other
relevant pattern recognition problems, such as regression estimation, nov-
elty detection (or single-class classification), multi-class classification and
regression, on-line learning, semisupervised learning, multi-task reinforce-
ment learning, and many others, which are beyond the scope of this paper.

The aim of this paper is to revisit the classical way to answer questions
such as whether or not the two classes can be separated by a hyperplane,
which is the best hyperplane, or what hyperplane comes closest to separating
the classes if the points are not separable.

126 R. Fletcher and G. Zanghirati

The key feature of our formulation is that we address the primal problem
directly. Solution of a primal formulation of the SVM problem has already
been addressed by some authors, first for the linear case (Mangasarian 2002,
Lee and Mangasarian 2001b, Keerthi and DeCoste 2005, Groenen et al.
2008, Franc and Sonnenburg 2008b) and then for the nonlinear case (Keerthi
et al. 2006, Chapelle 2007, Groenen, Nalbantov and Bioch 2007), but our
approach differs from the above because it can treat both the separable and
non-separable cases in the same way, without introducing the penalization
term. Furthermore, the method we propose in this paper always provides
primal feasible solutions, even if numerically we are not able to locate an
exact solution, whereas this is not the case for the other approaches.

Notation
Vectors are intended as column vectors and are represented by bold symbols;
lower-case letters are for scalars, vectors and function names; calligraphic
upper-case letters are for sets, and roman upper-case letters are for matrices.
When not otherwise stated, ‖ · ‖ will be the Euclidean norm.

2. Linear separation

Suppose the set D of m data points vi ∈ R
n, i = 1, . . . , m, is given, where

the points fall into two classes labelled by ai ∈ {−1, +1}, i = 1, . . . , m. It
is required that m ≥ 2 with at least one point per class (see De Vito et al.
(2004)), but interesting cases typically have m � n.

Assume first that the points can be separated by a hyperplane wT v+b = 0
where w (‖w‖ = 1) and b are fixed, with wT vi + b ≥ 0 for the ‘plus’
points and wT vi + b ≤ 0 for the ‘minus’ points. We can express this as
ai

(
wT vi + b

) ≥ 0, i = 1, . . . , m. Now we shift each point a distance h along
the vector −aiw until one point reaches the hyperplane (Figure 2.1), that
is, we maximize h subject to ai

(
wT

(
vi − haiw

)
+ b

) ≥ 0 (or equivalently
ai

(
wT vi + b

) − h ≥ 0), for i = 1, . . . , m. The solution is clearly h =
mini=1,...,m ai

(
wT vi + b

)
.

If only w is fixed, the best solution is h = maxb mini ai

(
wT vi + b

)
, which

equates the best distances moved by the plus and minus points separately.
Then the best solution over all w, ‖w‖ = 1, is

h∗ = max
w |wT w=1

max
b

min
i=1,...,m

ai

(
wT vi + b

)
, (2.1)

which can be determined by solving the problem

maximize
w,b,h

h (2.2a)

SP: subject to ai

(
wT vi + b

) − h ≥ 0 i = 1, . . . , m, (2.2b)

wT w = 1. (2.2c)

Binary separation and training SVMs 127

w

h

+1

−1

h>0

(a)

w∗

h∗
+1

−1

h∗>0

(b)

Figure 2.1. In the separable case, shift the points along the vector
−aiw towards the hyperplane. (a) A sub-optimal solution.
(b) The optimal separating hyperplane (OSH).

w

w∗

h

h∗
+1

−1

h>0

h∗>0

(a)

w

w∗

h

h∗

+1

+1

+1

−1

−1

−1
h<0

h∗<0

(b)

Figure 2.2. (a) In the linearly separable case h > 0, so any change to
w∗ gives a smaller h, that is, a worse non-optimal ‘solution’. (b) In
the linearly non-separable case the optimal separating hyperplane is
still correctly identified, but h∗ < 0, thus any change to w∗
decreases h by increasing its modulus.

128 R. Fletcher and G. Zanghirati

The solution w∗, b∗, h∗ of (2.2) defines the so-called optimal separating
hyperplane (OSH). In matrix notation the constraints (2.2b) become

AV T w + ab − eh ≥ 0,

where

a = (a1, . . . , am)T, A = diag(a), V = [v1 v2 · · · vm], e = (1, . . . , 1)T.

We refer to (2.2) as the standard problem (SP). Unfortunately wT w = 1 is
a nonlinear constraint. Nonetheless, this is the problem we would most like
to solve.

If the points are not separable, the best solution is obtained by shifting
the points by the least distance in the opposite direction. This leads to the
same standard problem, but the solution has h∗ < 0 (Figure 2.2). Hence, we
shall say that if h∗ > 0 then the points are strictly separable, if h∗ < 0 then
the points are not separable, and if h∗ = 0 the points are weakly separable.

Note that in the solution of the separable case, the active constraints in
(2.2b) identify the points of the two clusters which are nearest to the OSH
(that is, at the distance h∗ from it): these points are called support vectors.

2.1. The separable case

In this case, existing theory has a clever way of reducing the standard prob-
lem to a convex QP. We let w �= 0 be non-normalized and shift the points
along the normalized vector w/‖w‖ as before, giving the problem

maximize
w,b,h

h

subject to ai

(
wT (vi − haiw/‖w‖) + b

) ≥ 0 i = 1, . . . , m,
(2.3)

or equivalently

maximize
w,b,h

h

subject to ai

(
wT vi + b

) ≥ h‖w‖ i = 1, . . . , m.
(2.4)

Solving this problem, followed by dividing w and b by ‖w‖, yields the same
solution as above. We now fix ‖w‖ by

h‖w‖ = 1 or h = 1/‖w‖.
Then the problem becomes

maximize
w,b

‖w‖−1

subject to AV T w + ab ≥ e.
(2.5)

Binary separation and training SVMs 129

But maximizing ‖w‖−1 can be solved by minimizing ‖w‖ and hence by
minimizing 1

2 wT w. Hence we can equivalently solve the convex QP,

CQP:
minimize

w,b

1
2
wT w

subject to AV T w + ab ≥ e.

(2.6)

Denoting the multipliers of (2.6) by x, this problem has a useful dual,

CQD:
minimize

x

1
2
xT Qx − eT x

subject to aT x = 0, x ≥ 0,
(2.7)

where Q = AV T VA. Because the normalization of w requires h > 0, this
development only applies to the strictly separable case.

In comparing (2.6) and (2.7) with the solution of the SP, we see that if we
take a sequence of separable problems in which h∗ → 0, then ‖w∗‖ → +∞
(since h∗‖w∗‖ = 1): in fact all non-zero values of b∗ and x∗ converge to
±∞. For the limiting weakly separable problem, the convex QP (2.6) is
infeasible and the dual (2.7) is unbounded. However, solution of all these
problems by the SP (2.2) is well behaved, including the weakly separable
case. The solution of the limiting problem could also be obtained by scaling
the solution values obtained by (2.6) or (2.7) (see Section 3) and then taking
the limit, but it seems more appropriate to solve the SP directly.

2.2. The non-separable case

For a non-separable problem (h < 0), one might proceed by normalizing by
‖w‖ = −1/h in (2.4), giving

maximize
w,b

− ‖w‖−1

subject to AV T w + ab ≥ −e.
(2.8)

As for (2.5), maximizing −‖w‖−1 can be replaced by maximizing ‖w‖ and
hence by maximizing 1

2wT w. Unfortunately we now have a non-convex QP.
This can sometimes be solved by careful choice of initial approximation.
However, there is no dual, and ill-conditioning happens as h → 0. It does
not solve the h = 0 problem. We therefore look for alternatives.

Currently (see Section 1) the preferred approach in the literature is to
solve a dual,

L1QD:
minimize

x

1
2
xT Qx − eT x

subject to aT x = 0, 0 ≤ x ≤ ce,
(2.9)

130 R. Fletcher and G. Zanghirati

which is the dual of the L1-penalized primal

L1QP:
minimize

ξ,w,b

1
2
wT w + ceT ξ

subject to AV T w + ab ≥ e − ξ, ξ ≥ 0.

(2.10)

The advantage is that it is easy to solve. Some major disadvantages are:

• h > 0 case: the penalty parameter c must be not smaller than the
maximum multiplier if the solution of the SP is to be recovered. This
requires c → ∞ in the limiting case.

• h = 0 and h < 0 cases: the solution of the SP is not recovered. Some
experiments indicate that very poor ‘solutions’ may be obtained.

We are concerned that the solutions obtained by this method may be signifi-
cantly sub-optimal in comparison to the SP solution. Note that approximate
solutions of L1QD that are feasible in the dual (such as are obtained by most
existing software) will not be feasible in the primal, whereas our methods al-
ways provide primal feasible solutions, even if numerically we are not able to
locate an exact solution. A problem similar to (2.10) is considered directly
by Chapelle (2007), but using different (quadratic) penalties.

3. KT conditions for the standard problem

In view of the difficulties inherent in the existing approach based on (2.7),
when the problem is not strictly separable, we shall investigate an approach
based on solving the SP (2.2). First we need to identify KT conditions for
the SP. In doing this we again use x to denote the multipliers of the inequal-
ity constraints, and we write the normalization constraint in a particular
way which relates its multiplier, π say, to the solution value h. Thus we
write the SP as

minimize
w,b,h

− h (3.1a)

subject to AV T w + ab − eh ≥ 0 (3.1b)
1
2
(
1 − wT w

)
= 0. (3.1c)

The Lagrangian function for this problem is

L(w, b, h, x, π) = −h − xT
(
AV T w + ab − eh

) − π

2
(
1 − wT w

)
. (3.2)

KT conditions for optimality are feasibility in (3.1b) and (3.1c), and sta-
tionarity of L with respect to w, b and h, giving, respectively,

VAx = πw, (3.3a)

aT x = 0, (3.3b)

eT x = 1, (3.3c)

Binary separation and training SVMs 131

together with the complementarity condition

xT
(
AV T w + ab − eh

)
= 0, (3.4)

and non-negative multipliers
x ≥ 0. (3.5)

An interesting interpretation of (3.3b) and (3.3a) in terms of forces and
torques acting on a rigid body is given by Burges and Schölkopf (1997). We
note that (3.4) simplifies to give xT AV T w = h, and it follows from (3.3a)
and (3.1c) that

π = h. (3.6)

This simple relationship is the motivation for expressing the normalization
constraint as (3.1c).

These KT conditions are closely related to those for the CQP (2.6) when
h > 0. For the CQP the Lagrangian function is

L(w, b, h) =
1
2
wT w − xT

(
AV T w + ab − e

)
, (3.7)

and stationarity with respect to w and b gives AV x = w and aT x =
0. The complementarity condition xT

(
AV T w + ab − e

)
= 0 then yields

eT x = wT w. If w∗, b∗, h∗, x∗ denote the solution and multiplier of the SP,
we see that w∗/h∗, b∗/h∗ and x∗/h2∗ solve the KT conditions of the CQP,
and conversely h∗ = 1/‖w‖, w∗ = w/‖w‖, b∗ = b/‖w‖, x∗ = x/

(
wT w

)
determine the solution of the SP from that of the CQP.

If the CQD is solved, the solution of the CQP can be recovered from
w = VAx, h = 1/‖w‖, and b can be obtained by solving ai

(
wT vi + b

)
= 1

for any i such that xi > 0.

4. A new SQP-like algorithm

We now develop a new SQP-like algorithm for computing the solution w∗,
b∗, h∗ of the standard problem (2.2). The iterates in our algorithm are wk,
bk, hk, k = 0, 1, . . . , and we shall maintain the property that the iterates
are feasible in (2.2) for all k. Initially w0 (wT

0 w0 = 1) is arbitrary, and we
choose b0 and h0 by solving the 2-variable LP

minimize
b,h

− h (4.1a)

subject to AV T w0 + ab − eh ≥ 0. (4.1b)

At the kth iteration we solve a QP problem formulated in terms of the
correction d =

(
dT

w, db, dh

)T . We shall need the Hessian of the Lagrangian,
which is

W =
(

πIn×n 0n×2

0T
n×2 02×2

)
. (4.2)

132 R. Fletcher and G. Zanghirati

We also need to specify an estimate for the multiplier πk, which we shall
do below. Thus the standard QP subproblem (see, e.g., Fletcher (1987))
becomes

minimize
d

1
2
πkd

T
wdw − dh (4.3a)

subject to AV T
(
wk + dw

)
+ a(bk + db) − e(hk + dh) ≥ 0 (4.3b)

1
2
(
1 − wT

k wk

) − wT
k dw = 0. (4.3c)

Because we maintain feasibility, so wT
k wk = 1, and the equality constraint

simplifies to give −wT
k dw = 0.

It is also the case, in our algorithm, that the possibility of (4.3) being
unbounded can occur. Thus we also restrict the size of dw by a trust-
region-like constraint ‖dw‖ ≤ ∆ where ∆ > 0 is fixed. The aim is not to
use this to force convergence, but merely to prevent any difficulties caused
by unboundedness. Since we shall subsequently normalize wk + dw, the
actual value of ∆ is not critical, but we have chosen ∆ = 105 in practice.
We note that it is not necessary to bound db and dh, since it follows from
(4.3b) that if w is fixed, then an a priori upper bound on |db| and |dh|
exists.

Thus the subproblem that we solve in our new algorithm is

minimize
d

1
2
πkd

T
wdw − dh (4.4a)

QPk: subject to AV T
(
wk + dw

)
+ a(bk + db) − e(hk + dh) ≥ 0 (4.4b)

− wT
k dw = 0 (4.4c)

‖dw‖∞ ≤ ∆. (4.4d)

Since d = 0 is feasible in QPk, and dw is bounded, there always exists
a solution. In practice we check ‖d‖ < τd for some fixed small tolerance
τd > 0.

We shall denote the outcome of applying the resulting correction d by(
w◦, b◦, h◦) =

(
wk + dw, bk + db, hk + dh

)
. (4.5)

We now differ slightly from the standard SQP algorithm by rescaling these
values to obtain the next iterate, as

wk+1

bk+1

hk+1


 =

1
‖w◦‖


w◦

b◦
h◦


, (4.6)

which ensures that the new iterate is feasible in (2.2). The standard choice
in SQP for the multiplier πk would be πk = hk by virtue of (3.6). However,

Binary separation and training SVMs 133

if hk < 0 this would result in QPk being a non-convex QP. Thus we choose

πk = max{hk, 0} (4.7)

as the multiplier estimate for (4.4a). For hk ≤ 0 we then note that (4.4) is
in fact a linear programming (LP) calculation. Moreover, in the initial case
(4.1), we shall see in Section 4.1 that the solution can be solved directly
rather than by using an LP solver.

There are two particularly unusual and attractive features of the new
algorithm. First we shall prove in Theorem 4.1 below that hk is strictly
monotonically increasing whilst dw �= 0. Thus we have not needed to
provide any globalization strategy to enforce this condition. Even more
surprisingly, we have found that the sequence of iterates terminates at the
solution after a finite number of iterations. We have not yet been able to
prove that this must happen. We had conjectured that termination would
happen as soon as the correct active set had been located by the algorithm,
but numerical evidence has disproved this conjecture. A negative feature
of the SP should also be noted, that being a non-convex NLP, there is no
guarantee that all solutions are global solutions. Indeed, we were able to
construct a case with a local but not global solution w∗, and our SQP-like
algorithm could be made to converge to this solution by choosing w0 close
to w∗. In practice, however, we have not recognized any other instances of
this behaviour.

Before proving Theorem 4.1 we note that QPk (4.4) can equivalently be
expressed as

maximize
w∈Wk,b,h

h − 1
2
πkw

T w (4.8a)

subject to AV T w + ab − eh ≥ 0, (4.8b)

where

Wk =
{
w |wT

k w = 1, ‖w − wk‖∞ ≤ ∆
}
. (4.9)

Hence the solution of QPk can also be expressed as

h◦ = max
w∈Wk

max
b

min
i=1,...,m

ai

(
vT

i w + b
)
. (4.10)

Since w◦ is the maximizer over Wk it follows that

h◦ = max
b

min
i=1,...,m

ai

(
vT

i w◦ + b
)

(4.11)

and b◦ is the maximizer over b. We also observe from wT
k dw = 0, wT

k wk = 1
and w◦ = wk + dw by Pythagoras’ theorem that ‖w◦‖ ≥ 1, and if dw �= 0,
that

‖w◦‖ > 1. (4.12)

134 R. Fletcher and G. Zanghirati

Dividing through (4.11) by ‖w◦‖ yields

hk+1 = max
b

min
i=1,...,m

ai

(
vT

i wk+1 + b/‖w◦‖), (4.13)

and bk+1 = b◦/‖w◦‖ is the maximizer over b. This provides an inductive
proof of the result that

hk = max
b

min
i=1,...,m

ai

(
vT

i wk + b
)
, (4.14)

since we establish this result for k = 0 in solving (4.1).

Theorem 4.1. If at the kth iteration dw = 0 does not provide a solution
of QPk, then hk+1 > hk.

Remark 4.2. Essentially we are assuming that if dw = 0 in any solution
to QPk, then the algorithm terminates. Otherwise we can assume that both
dw �= 0 and h◦ > hk when proving the theorem.

Proof. First we consider the case that hk = πk > 0. We shall define

f◦ = max
w∈Wk

(
max

b
min

i=1,...,m
ai

(
vT

i w + b
) − 1

2
πkw

T w

)
(4.15)

and note as in Section 2 that f◦ solves the problem

maximize
w∈Wk,b,f

f

subject to ai

(
vT

i w + b
) − 1

2
πkw

T w ≥ f i = 1, . . . , m.
(4.16)

If we substitute f = h − 1
2πkw

T w, we note that this becomes the problem

maximize
w∈Wk,b,h

h

subject to ai

(
vT

i w + b
) ≥ h i = 1, . . . , m,

(4.17)

which is solved by w◦, b◦ and h◦. Thus we can identify f◦ = h◦− 1
2πkw

◦T w◦
and assert that

h◦ =
1
2

πk(w◦)T w◦

+ max
w∈Wk

(
max

b
min

i=1,...,m
ai(vT

i w + b) − 1
2

πkw
T w

)
.

(4.18)

But wk ∈ Wk, so it follows that

h◦ ≥ 1
2

πk(w◦)T w◦

+
(
max

b
min

i=1,...,m
ai(vT

i wk + b)
)
− 1

2
πkw

T
k wk.

(4.19)

Binary separation and training SVMs 135

Using wT
k wk = 1, πk = hk and the induction hypothesis (4.14), it follows

that

h◦ ≥ 1
2

hk(w◦)T w◦ + hk − 1
2

hk =
1
2

hk

(‖w◦‖2 + 1
)
. (4.20)

Hence

hk+1 = h◦/‖w◦‖ ≥ 1
2

hk

(‖w◦‖ + ‖w◦‖−1
)
. (4.21)

Finally, from dw �= 0 and (4.12) it follows that hk+1 > hk in this case.
In the case hk = 0, we note that h◦ ≥ hk by virtue of (4.10) and the fact

that wk ∈ Wk in (4.14). But if h◦ = hk , then wk solves (4.4), which implies
that dw = 0 in (4.4c), which is a contradiction. Thus hk+1 = h◦/‖w◦‖ > 0
and hk = 0 so hk+1 > hk, which completes the case hk = 0.

Finally, we consider the case hk < 0. It follows directly from h◦ > hk and
(4.12) that

hk+1 =
h◦

‖w◦‖ >
hk

‖w◦‖ > hk,

and the proof is complete.

4.1. Solution boundedness and starting point

We mentioned that (4.3b) implies the boundedness of db and dh, and hence
of b and h. However, it is interesting to see directly how b and h are bounded
for w ∈ Wk. Let P = {i | ai = +1}, M = {i | ai = −1} and assume that they
are both non-empty (otherwise we would not have a binary classification
problem). For fixed w ∈ Wk the solution of QPk for b and h is given by

h = max
b

min
i

ai

(
vT

i w + b
)

= max
b

min
{

b + min
i∈P

(
vT

i w
)
, −b + min

i∈M
(−vT

i w
)}

= max
b

min
{
b + α, −b + β

}
, (4.22)

where α = mini∈P
(
vT

i w
)

and β = mini∈M
(−vT

i w
)

depend only on the
fixed w. Now

b + α ≥ −b + β ⇔ b ≥ 1
2
(β − α)

and we have two cases: (i) if b ≥ (β − α)/2, then the minimum is given
by −b + β, and the maximum over b is then obtained when b = (β − α)/2,
that is, h = (α − β)/2 + β = (α + β)/2; (ii) if b ≤ (β − α)/2, then the
minimum is given by b + α, and the maximum over b is obtained again
when b = (β − α)/2, which gives h = (β − α)/2 + α = (α + β)/2. Thus, for
any fixed w ∈ Wk the solution of the max min problem (4.22) is given by

h = (α + β)/2 and b = (β − α)/2. (4.23)

136 R. Fletcher and G. Zanghirati

Since w ∈ Wk is bounded, there exist bounds on α and β by continuity,
and hence on b and h. Moreover, the equations (4.23) directly provide the
solution of (4.1) for any fixed w, so we do not need to solve the LP problem.

Also, we have already mentioned that we can start the algorithm from
a normalized random vector w0. However, a better initial estimate can
be obtained by choosing the normalized vector w0 joining the two nearest
points of the opposite classes. Once we have chosen w0, we can compute α
and β. Hence, our starting point for the SQP algorithm is given by w0, b0,
h0, with b0, h0 as in (4.23). As we shall see later in the next section, this
choice will also provide a natural way to initialize in the algorithm in the
case of nonlinear SVMs.

5. Nonlinear SVMs

In practice it is very rare that the points vi are adequately separated by a
hyperplane wT∗ v + b∗ = 0. An example which we use below is one where
points in R

2 are classified according to whether they lie in a black square
or a white square of a chessboard. The nonlinear SVM technique aims
to handle the situation by mapping v nonlinearly into a higher dimension
space (the so-called feature space), in which a satisfactory separation can
be obtained. Thus we are given some real functions

φ(v) =
(
φ1(v), φ2(v), . . . , φN (v)

)T
, (5.1)

presently finite in number, and we solve the standard problem with the
matrix

Φ(v) =
[
φ(v1) φ(v2) · · · φ(vm)

]
, (5.2)

replacing the matrix V . The solution values w∗, b∗, h∗ then provide a
classification function

f(v) = wT
∗ φ(v) + b∗ (5.3)

which maps the optimal separating hyperplane in feature space, back into
R

n. The multipliers x∗ obtained in the feature space also allow us to express

f(v) =
1
h

(∑
i

(x∗)iaiφ(vi)T φ(v)
)

+ b∗ (5.4)

when h∗ > 0, and we notice that the sum only needs to be computed over
the support vectors, by virtue of (3.4) and (3.5); see, for instance, Cucker
and Zhou (2007) for a treatment of this subject from an approximation
theory viewpoint.

Also, when h∗ > 0, we can solve the SP by the transformation leading to
the convex dual (2.7) in which Q = AΦT ΦA. The matrix Q is necessarily
positive semidefinite, and if it is positive definite then the dual has a unique
solution, and hence also the primal and the SP.

Binary separation and training SVMs 137

This development has suggested another approach in which a kernel func-
tion K(t, y) is chosen, which can implicitly be factored into the infinite-
dimensional scalar product

∑∞
i=1 φi(t)φi(y), in which the functions φi(·)

are known to exist but may not be readily available;2 see, for example,
Shawe-Taylor and Cristianini (2004) and Schölkopf and Smola (2002). One
of these kernel functions is the Gaussian kernel

K(t, y) = exp
(−‖t − y‖2/(2σ2)

)
. (5.5)

An m × m matrix K with elements Kij = K(vi, vj) may be computed
from the vi, and K is positive semidefinite. For some kernels, such as
the Gaussian kernel, K is always positive definite when the points vi are
distinct. Then Q = AKA and the dual problem (2.7) may be solved to
determine x∗. Then the classification may be expressed as

f(v) =
m∑

i=1

(x∗)iaiK(vi, v). (5.6)

Although the primal solution w∗ and the map φ(v) may be infinite in
dimension, and hence not computable, the dual problem can always be
attempted and, when Q is positive definite, always has a unique solution.
Because of such considerations most existing research and software are dual-
based.

In practice, however, m is likely to be extremely large, and Q is a dense
matrix, so solving the dual is extremely challenging computationally. Also
Q may be numerically singular, even for quite small values of m. It seems
not to be well known that primal algorithms based on a kernel function
are also practicable. Ignoring numerical considerations for the present, the
approach is to calculate full-rank exact factors

K = UT U (5.7)

of the kernel matrix K, where rank(U) = N may be smaller than m. Then
the SP is solved with U replacing V . The key step in determining the clas-
sification function f(v) for arbitrary v is to find the least-squares solution
of the system

Uθ =
(K(v1, v), . . . ,K(vm, v)

)T
. (5.8)

2 The fundamental hypothesis is that we can find a Mercer’s kernel, that is, a symmetric
and positive semidefinite function K : X ×X → R, where X is a compact metric space.
It is well known that, given such a symmetric and positive semidefinite function K, there
exists exactly one Hilbert space of functions HK such that: (i) Kx = K(x, ·) ∈ HK,
∀x ∈ X ; (ii) span{Kx |x ∈ X} is dense in HK; (iii) f(x) = 〈Kx, f〉HK ∀f ∈ HK
and ∀x ∈ X ; (iv) the functions in HK are continuous on X with a bounded inclusion
HK ⊂ C0(X). Property (iii) is known as the reproducing property of the kernel K and
the function space HK is called the reproducing kernel Hilbert space (RKHS).

138 R. Fletcher and G. Zanghirati

Then the classification function is

f(v) = wT
∗ θ + b∗, (5.9)

where w∗ and b∗ are obtained from the SP solution. It is readily observed
when v = vj that f(vj) is identical to the value obtained from (5.6) based
on the dual solution. Also, when U is square (N = m) and non-singular,
the same outcome as from (5.6) is obtained for all v.

Because K is often nearly singular, it is even more effective and practical
to consider calculating low-rank approximate factors K ≈ UT U in which
U has full rank (rank(U) = N) but N < rank(K); see, for instance, Fine
and Scheinberg (2001), Williams and Seeger (2001), Drineas and Mahoney
(2005), Keerthi and DeCoste (2005) and Kulis, Sustik and Dhillon (2006).
This enables the effects of ill-conditioning to be avoided, and is compu-
tationally attractive since the work scales up as N2m, as against m3 for
some dual-based methods. An efficient technique for calculating a suitable
U is partial Cholesky factorization with diagonal pivoting (Goldfarb and
Scheinberg 2004). This can be described in Matlab-like notation by

Initialize d=diag(K); U=[];
while 1

i=argmax(d); if d(i)<=tol, break; end;
s=sqrt(d(i)); u=(K(i,:)-U(i,:)’*U)/s;
U=[U;u]; d=d-u.^2;

end.

(5.10)

The size of N is determined by the size of tol. It is advantageous that only
the diagonal elements and one column of K on each iteration are needed,
and not the entire matrix.

An important observation when using approximate Cholesky factors is
the following. Let pivots denote the indices of the diagonal pivots used in
calculating U . If i ∈ pivots then row and column i of K−UT U are zero. If
the SP is solved using the factor U , it then follows that the resulting value
of f(vi) agrees exactly with that which would be obtained by solving the SP
with the exact U . Thus data points vi, i ∈ pivots, are correctly classified
when approximate factors are used. It is important that the support vectors
arising from solving the SP are correctly classified, whereas errors in f(vi)
for i /∈ pivots may be tolerated. We have therefore experimented with an
algorithm based on the following:

1 initialize pivots by a small number, N = 10 say, of diagonal pivots;
2 solve the SP using the resulting U and let svs denote the resulting set

of support vectors;
3 set newpivots = setdiff(pivots,svs);

Binary separation and training SVMs 139

4 finish if newpivots is empty;
5 set pivots = pivots ∪ newpivots, extend the factor U appropriately,

and go to step 2.

We refer to the iterations of the scheme as outer iterations. Iterations of
the SQP-like algorithm used to solve the SP are inner iterations.

When this algorithm terminates, svs ⊂ pivots, and any classification
errors are in data points of non-pivots. We have found on some smaller
problems that the correct set of support vectors is identified more quickly,
and with smaller values of N , than with diagonal pivoting. For some larger
problems, we found that adding all the new pivots in step 5 could lead to
difficulties in solving the SP due to ill-conditioning. It is therefore better
to use diagonal pivoting amongst the new pivots, and not to add any new
pivot for which di (see (5.10)) is very small. In fact the 2-norm of row i of
K − UT U may be bounded by (di‖d‖1)1/2, which enables a good estimate
of the classification error of any data point to be made (see also Woodsend
and Gondzio (2007b) for another way to choose the pivots). Moreover, the
initialization step 1 in the previous algorithm can be fruitfully substituted
by the following:

1 initialize pivots by {i0, j0}, where i0 ∈ P and j0 ∈ M are the indices
used to compute α and β in (4.23).

The matrices U generated by the algorithm are most often dense (few zero
elements), so the QPs are best handled by a dense matrix QP solver. We
have used the BQPD code by Fletcher (1996–2007). It is important that
the number of QP variables does not become too large, although the code
can tolerate larger numbers of constraints. This equates to U having many
more columns than rows, as is the case here. We also make frequent use of
warm starts, allowing the QP solution to be found quickly starting from the
active set of the previous QP calculation.

We are continuing to experiment with algorithms of this type and the
interplay between classification error, choice of pivots and the effects of ill-
conditioning. For example, one idea to be explored is the possibility of
detecting pivots that are not support vectors, in order to reduce the size of
U , promote speed-up, and improve conditioning.

6. Numerical experience

In this section we first give examples that illustrate some features of the
primal-based low-rank SQP approach for nonlinear SVMs described in the
previous section. We show on a small problem how this readily finds the
solution, whereas there are potential difficulties when using the L1QD for-
mulation (2.9). We use a scaled-up version of this problem to explore some
other aspects of the low-rank algorithm relating to computational efficiency.

140 R. Fletcher and G. Zanghirati

Finally we outline preliminary numerical experience on some well-known
data sets available on-line and often used for algorithm comparison. We
do not need to use data pre-processing in our experiments (see the final
discussion for more details).

6.1. A 3 × 3 chessboard problem

We have seen in Section 2.2 that even in (nonlinearly) separable cases, the
‘solution’ obtained from the L1QD may not agree with the correct solution
of the SP, because an insufficiently large value of the penalty parameter c
has been used. We illustrate this feature using the small 3×3 chessboard-like
example with 120 data points, shown in Figure 6.1(a). We use a Gaussian
kernel with σ = 1. The solution computed by the low-rank SQP algorithm
of Section 5 is shown in Figure 6.1(b).

Six outer iterations are required and each one terminates after 2 to 5 inner
iterations. No pivots are thresholded out in these calculations. There are
16 data points recognized as support vectors, which are highlighted with
thick squares around their symbols, and the contours of f(v) = +h, 0, −h
are plotted, the thicker line being the zero contour. The solution has h∗ =
7.623918E−3, showing that the two classes are nonlinearly separable by the
Gaussian, as the theory predicts. The number of pivots required is 30, and

0 1 2 3
0

1

2

3

(a) 120 samples

0 1 2 3
0

1

2

3

+h

+h

−h

−h

(b) SQP solution after 16 iterations

Figure 6.1. (a) 3× 3 chessboard test problem. (b) Solution of the 3× 3
problem computed by the low-rank SQP-like algorithm with Gaussian
kernel (σ = 1): there are 16 support vectors, b ≈ 9.551186E−2 and
h ≈ 7.623918E−3, showing that the two classes are separable by the
given Gaussian.

Binary separation and training SVMs 141

this is also the final rank of U , showing that it is not necessary to factorize
the whole of K to identify the exact solution. It is also seen that the zero
contour quite closely matches the ideal chessboard classification shown in
Figure 6.1(a).

To compare this with the usual SVM training approach based on the
L1QD (2.9), we solve this problem for a range of values of the penalty
parameter c, whose choice is a major issue when attempting a solution;
see, for example, Cristianini and Shawe-Taylor (2000), Schölkopf and Smola
(2002), Cucker and Smale (2002) and Shawe-Taylor and Cristianini (2004).
As the theory predicts, the SP solution can be recovered by choosing a
sufficiently large c. Here the threshold is c ≥ 5000 as in Figure 6.2(f). As
can be seen in Figure 6.2, the dual solution is strongly sub-optimal even
for quite large values of c. Such values might well have been chosen when
using some of the usual heuristics, such as cross-validation, for the penalty
parameter.

The behaviour of Lagrange multipliers is also of some interest. For the SP
solution there are 16 non-zero multipliers corresponding to the 16 support
vectors. For the L1QD solutions, there are many more non-zero multipliers
when c < 5000. We continue to refer to these as SVs in Figure 6.2 and
Table 6.1. Multipliers on their upper bound (that is, xi = c, with xi being
computed from the L1QD problem) are referred to as BSVs in the table.
These data points violate the constraints that the distance from the optimal
separating hypersurface is at least h. Some of these have a distance whose
sign is opposite to their label. These points we refer to as being misclassified.
By increasing c we have fewer multipliers that meet their upper bound,
thus removing misclassifications: finally the remaining non-zero multipliers
indicate the ‘true’ support vectors and the optimal separation is identified
(see Table 6.1 and again Figure 6.2). These results agree with those of other
well-known dual-based reference software such as SVMlight, LIBSVM and
GPDT (see Section 6.3 for more information).

Table 6.1. Results for the direct solution of the L1QD problem on the 3 × 3
chessboard data set.

c SVs BSVs b h f miscl.

0.5 109 103 7.876173E−2 1.041818E−1 −4.606665E+1 30
2.0 93 81 4.671941E−1 5.933552E−2 −1.420171E+2 25

20.0 58 45 3.031417E−2 2.487729E−2 −8.079118E+2 20
50.0 47 34 3.737594E−2 1.798236E−2 −1.546240E+3 14

1000.0 23 5 7.992453E−2 9.067501E−3 −6.081276E+3 15
5000.0 16 0 9.551186E−2 7.623918E−3 −8.602281E+3 0

142 R. Fletcher and G. Zanghirati

0 1 2 3
0

1

2

3

(a) c = 0.5, #SVd = 109

0 1 2 3
0

1

2

3

(b) c = 2.0, #SVd = 93

0 1 2 3
0

1

2

3

(c) c = 20, #SVd = 58

0 1 2 3
0

1

2

3

(d) c = 50, #SVd = 47

0 1 2 3
0

1

2

3

(e) c = 1000, #SVd = 23

0 1 2 3
0

1

2

3

(f) c = 5000, #SVd = 16

Figure 6.2. Different ‘solutions’ for the 3×3 problem computed
by directly solving the QP dual with Gaussian kernel (σ = 1).

Binary separation and training SVMs 143

Also for c < 5000, the f(v) = 0 contour agrees much less well with the
true one obtained by the low-rank SQP-like algorithm. We conclude that in
problems for which a satisfactory exact separation can be expected, solving
the SP, for example by means of the low-rank algorithm, is likely to be
preferable.

6.2. An 8 × 8 chessboard problem

To illustrate some other features we have used a scaled-up 8× 8 chessboard
problem with an increasing number m of data points. Again, we use a Gauss-
ian kernel with σ = 1. The case m = 1200 is illustrated in Figure 6.3(a),
and the solution of the SP by the low-rank SQP algorithm (Section 5) in
Figure 6.3(b).

For the solution of this larger problem we set additional parameters in our
low-rank SQP-like algorithm. In particular, in addition to the upper bound
∆ = 105 for constraint (4.4d), the tolerances tol in (5.10) for accepting
a new pivot and τd for stopping the inner iterations at step 2 come into
play. For this test problem we set them as tol = 10−9 and τd = 10−6,
respectively. Points recognized as support vectors are again highlighted
with thick squares.

Only 9 outer iterations are required by this method. If we increase m to
12000 as shown in Table 6.2, the number of outer iterations is only 10. This
is consistent with the fact that the additional points entered into the data
set do not contain much more information about the intrinsic probability
distribution, which is unknown to the trainer (see the final discussion for
more details). From a numerical viewpoint, this is captured by the number
of ‘relevant’ pivots selected for the construction of the low-rank approxi-
mation of the kernel matrix K. Actually, the additional information only

Table 6.2. Nonlinear training results of the SQP-like algorithm on the 8 × 8 cells
chessboard data set. Here, itout are the outer iterations, itin the inner iterations,
rank(U) and SVs are the final rank of the approximate Hessian factor and the
final number of support vectors detected, respectively. For the inner iterations we
report the total amount (Tot), the minimum (Min) the maximum (Max) and the
average (Avg) counts over the whole run.

itin
m itout Tot Min Max Avg rank(U) b h SVs

1200 9 60 2 16 6.7 268 1.2015E−3 1.1537E−4 123
12000 10 70 3 17 7.0 327 2.0455E−3 1.1653E−5 173

144 R. Fletcher and G. Zanghirati

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

(a) 1200 samples

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

(b) SQP final solution (9 iterations)

Figure 6.3. (a) 8 × 8 chessboard test problem. (b) Solution
computed by the low-rank SQP-like algorithm.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Figure 6.4. The reconstruction of the 8 × 8 chessboard with
12000 samples by the SQP-like algorithm. Only the few
support vectors are highlighted; the positive class is in dark
grey and the negative class is in light grey. The additional
data allow much better approximation of the real separating
hypersurface by the computed nonlinear solution.

Binary separation and training SVMs 145

0 2 4 6 8 10
0

50

100

150

200

Outer iterations

Number of SVs
Number of added pivots

(a)

0 2 4 6 8 10
0

100

200

300

400

Outer iterations

R
an

k
of

 m
at

ri
x

U

(b)

Figure 6.5. Identification performances on the chessboard case with
12000 samples. (a) Number of support vectors identified and
number of new pivots to add to the model. (b) Rank of factor U .

affects minor details of the model, such as the positioning and accuracy of
edges and corners (see Figure 6.4).

The ability of the low-rank algorithm to accumulate relevant information
can be observed by how it builds up the approximate factor U . The plots
in Figure 6.5 show that the pivot choice strategy promotes those columns
which are most meaningful for the kernel matrix K. In the later iterations,
fewer relevant pivots are detected, and are often thresholded out, so that
fewer changes to the rank of U occur. This all contributes to the rapid
identification of the exact solution. The threshold procedure is also an im-
portant feature for controlling ill-conditioning caused by the near singularity
of K.

6.3. Larger data sets

We have also performed preliminary numerical experiments on some well-
known data sets available on-line and often used for algorithm comparison.

We will report the training performance in terms of number of SQP iter-
ations (itn), separability (h), displacement (b) and support vectors (SV) on
the training sets, compared with those given by three other reference soft-
wares that use the classical approach (that is, solving the L1-dual): SVMlight

by T. Joachims (Joachims 1999), LIBSVM by Chan and C. J. Lin (Chang
and Lin 2001, Bottou and Lin 2007) and GPDT by T. Serafini, G. Zanghi-
rati and L. Zanni (Serafini et al. 2005, Zanni et al. 2006). We have used a
Fortran 77 code that is not yet optimized for performance: since the com-
peting codes are all highly optimized C or C++ codes, we do not compare
the computational time.

146 R. Fletcher and G. Zanghirati

Data sets and program settings
The Web data sets are derived from a text categorization problem: each
set is based on a 300-word dictionary that gives training points with 300
binary features. Each training example is related to a text document and
the ith feature is 1 only if the ith dictionary keyword appears at least once
in the document. The features are very sparse and there are replicated
points (that is, some examples appear more than once, possibly with both
positive and negative labels). The data set is available from the J. Platt’s
SMO page at www.research.microsoft.com/jplatt/smo.html.

Each one of the dual-based software codes implements a problem decom-
position technique to solve the standard L1-dual, in which the solution of
the dual QP is sought by solving a sequence of smaller QP subproblems
of the same form as the whole dual QP. After selecting the linear kernel,
one is required to set some parameters to obtain satisfactory performance.
These parameters are the dual upper bound c in (2.9), the subproblem size
q for the decomposition technique, the maximum number n (≤ q) of vari-
ables that can be changed from one decomposition iteration to the next, the
stopping tolerance e (10−3 in all cases) and the amount of ‘cache memory’
m (300 MB in all cases). Note that the program cache memory affects only
the computing time. We set q = 800 and n = 300 on all GPDT runs, whilst
with SVMlight we set q = 50, n = 10 for the sets web1a to web3a and q = 80,
n = 20 in the other cases. Since LIBSVM implements an SMO approach
where q = 2, it does not have these parameters.

Results
The results reported in Table 6.3 clearly show how our SQP approach is able
to detect whether or not the classes are separable, in very few iterations. It
can be seen that all the sets appear to be linearly weakly separable, with
the OSH going through the origin: checking the data sets, this result is
consistent with the fact that the origin appears many times as a training
example, but with both the negative and the positive label. No other data
points seem to be replicated in this way.

Moreover, from Table 6.4 we can see an interesting confirmation of the
previous results for these data sets: using the Gaussian kernel the points of
the two classes can be readily separated (we use σ =

√
10 as it is standard

in the literature), and during the iterations an increasing number of support
vectors is temporarily found whilst approaching the solution. Nevertheless
in the final step, when the solution is located, only two support vectors
are identified, which is consistent with the fact the the origin is labelled in
both ways. Hence these data sets remain weakly separable, likewise with
the linear classifier. We do not report numbers for the two larger data sets
because our non-optimized implementation ran for too long, but partial
results seem to confirm the same behaviour (in the full case, after 11 outer

Binary separation and training SVMs 147

Table 6.3. Linear training results on the Web data sets. For the dual-based codes
c = 1.0 is used.

Web b by J. Platt’s SQP-like method
data set size document itn h b SVs

1a 2477 1.08553 1 0.47010E−19 0.47010E−19 8
2a 3470 1.10861 1 −0.69025E−30 −0.20892E−29 4
3a 4912 1.06354 1 −0.23528E−29 −0.41847E−29 6
4a 7366 1.07142 1 0.30815E−32 −0.20184E−30 2
5a 9888 1.08431 1 0.36543E−18 0.18272E−17 84
6a 17188 1.02703 1 −0.26234E−18 0.26234E−18 117
7a 24692 1.02946 1 −0.17670E−27 0.62793E−26 174
full 49749 1.03446 1 −0.34048E−18 −0.13268E−16 176

Web GPDT SVMlight

data set itn b SVs BSVs itn b SVs BSVs

1a 6 1.0845721 173 47 245 1.0854851 171 47
2a 6 1.1091638 231 71 407 1.1089056 223 71
3a 6 1.0630223 279 106 552 1.0629392 277 104
4a 9 1.0710564 382 166 550 1.0708609 376 165
5a 10 1.0840553 467 241 583 1.0838959 465 244
6a 14 1.0710564 746 476 1874 1.0271027 759 479
7a 20 1.0295484 1011 682 2216 1.0297588 978 696
full 25 1.0295484 1849 1371 3860 1.0343829 1744 1395

Web LIBSVM
data set itn b SVs BSVs

1a 3883 1.085248 169 47
2a 5942 1.108462 220 73
3a 8127 1.063190 275 112
4a 14118 1.070732 363 172
5a 30500 1.083892 455 247
6a 41092 1.026754 729 485
7a 105809 1.029453 968 702
full 112877 1.034590 1711 1423

148 R. Fletcher and G. Zanghirati

Table 6.4. Nonlinear training results on the Web data set. For the dual-based
codes c = 1.0 is used. Here rU = rank(U).

itin
m itout Tot Min Max Avg rU b h SVs

2477 7 19 2 3 2.7 88 1.5583E−15 7.9666E−18 2
3470 8 27 2 6 3.4 148 -1.7167E−03 1.6152E−17 2
4912 9 30 2 6 3.3 155 1.8521E−16 -2.0027E−18 2
7366 8 28 2 6 3.5 163 -4.0004E−18 0.0000E+00 2
9888 9 37 2 10 4.1 307 -6.1764E−17 4.4907E−17 2

17188 10 43 2 9 4.3 323 8.1184E−14 -1.2713E−13 2

iterations we observed that h = −6.626E−16 with only 4 support vectors
and rank(U) = 911).

We have also performed some tests with subsets of the well-known MNIST
data set of handwritten digits (LeCun and Cortes 1998, LeCun, Bottou,
Bengio and Haffner 1998; www.research.att.com/˜yann/ocr/mnist): this is
actually a multiclass data set with ten classes, each one containing 6000
images (28 × 28 pixels wide) of the same digit, handwritten by different
people. We constructed two binary classification problems by training a
Gaussian SVM to recognize the digit ‘8’ from the other ‘not-8’ digits. The
problems have m = 400 and m = 800: they are obtained by randomly
selecting 200 (400) examples of digit 8 and 200 (400) from the remaining not-
8 digits. Examples of ‘8’ are given class +1. The vectors v in these cases have
784-dimensional integer components ranging from 0 to 255 (grey levels),
with an average of 81% zeros. Setting σ = 1800 (as is usual in the literature),
our algorithm was able to compute the solution of both problems in a few
outer iterations (12 and 13, respectively), detecting the usual number of
support vectors (175 and 294, respectively) and significantly fewer pivots
(183 and 311, respectively) than the number of examples. In fact only a
handful of pivots are not support vectors, which is a clear justification of
our approach.

7. Uncertain and mislabelled data

We begin this section with a small example that highlights potential dif-
ficulties in finding a meaningful classification for situations in which there
are uncertain or mislabelled data points. This indicates that much more
thought needs to be given in regard to what type of optimization prob-
lems it is best to solve. We make some suggestions as to future directions
of research.

Binary separation and training SVMs 149

0 1 2 3
0

1

2

3

(a) 16 ‘misclassified’ points

0 1 2 3
0

1

2

3

(b) SP solution

Figure 7.1. (a) 3 × 3 chessboard test problem where the labels of 12
points (marked by the diamonds) have been deliberately changed.
(b) The corresponding SP solution.

We consider the same 3× 3 chessboard problem as in Section 6.1, but we
mislabel some points close to the grid lines as in Figure 7.1(a) (marked by
diamonds). Again using a Gaussian kernel with σ = 1, we then solve the
SP and find a separable solution shown in Figure 7.1(b).

Now we see a less satisfactory situation: in order to obtain separation,
the zero contour of the classification function becomes very contorted in the
vicinity of some of the mislabelled points. Also the separation is very small
(very small h∗) and more support vectors (27) are needed.

Solving the L1QD problem with c = 5 · 104 produces the outcome of
Figure 7.2, and we see that the zero contour is less contorted and some data
points with L1 errors, including some misclassifications, are indicated. This
outcome is likely to be preferable to a user than the exact separable solution.
Thus we need to give serious thought to how to deal with data in which
there may be mislabellings, or if the labelling is uncertain. Yet we still find
some aspects of the current approach based on L1QD to be unsatisfactory.
Choosing the parameter c gives a relative weighting to 1

2wT w and the L1

error in the constraints, which seems to us to be rather artificial. Moreover,
choosing c is often a difficult task and can easily result in a bad outcome. Of
course the method does provide ‘solutions’ which allow misclassified data,
but it is not always clear that these provide a meaningful classification, or
even that mislabelled data are correctly identified.

We therefore suggest alternative directions of research in which L1 solu-
tion may be used. For example we may start by solving the SP problem to

150 R. Fletcher and G. Zanghirati

0 1 2 3
0

1

2

3

Figure 7.2. Solution of the 3 × 3 chessboard mislabelled
problem computed by L1QD with c = 5 · 104.

decide if the problem is separable (we know this will be so for the Gaussian
kernel) and find the optimum value h∗. If there are indications that this
solution is undesirable (e.g., h∗ very small, multipliers very large), then we
might ask the user to supply a margin ĥ > h∗ and solve the NLP problem

minimize
w,b,ξ

eT ξ

subject to AV T w + ab + ξ − eĥ ≥ 0

wT w = 1
ξ ≥ 0.

(7.1)

The term eĥ renders the constraint set infeasible, and we find the best L1

relaxation as defined by ξ. There is no reference to w in the objective
function, which is desirable. We can devise an SLP algorithm to solve
this problem in a similar way to Sections 2 and 5. A disadvantage to this
approach is that the Jacobian matrix will contain a large dense block (U in
Section 5) but also a sparse block (I) that multiplies ξ. Thus an LP solver
with a suitably flexible data structure to accommodate this system is likely
to be important.

We also point out another feature that is worthy of some thought. In
the Web problems there exist identical data points which are labelled in a
contradictory way (both +1 and −1 labels). This suggests that, rather than
ignore these points, we should use them to fix b, and then solve a maximal
margin problem over the remaining points, but with b being fixed.

Some other data sets give rise to solutions of the SP in which all the
data points are support vectors. Such large-scale problems are seriously
intractable, in that the full-rank factors of K may be required to find the

Binary separation and training SVMs 151

solution. Any practical method for computing the solution is likely to de-
clare many misclassified data points, and one then has to ask whether the
data set is at all able to determine a meaningful classification. A possible
remedy might be to give more thought to choosing parameters in the kernel
function, as described in Section 8.

8. Additional issues

We have not yet mentioned the issue of the probabilistic nature of binary
separation. In the context of Machine Learning, the effectiveness of a bi-
nary classifier is also measured in regard to additional aspects other than
the ability to correctly fit the given set of data. The most important of
these aspects is generalization, that is, the ability of the classifier to cor-
rectly recognize previously unseen points, that is, points not involved in the
training problem; see, for instance, Vapnik (1998, 1999), Herbrich (2002),
Schölkopf and Smola (2002) and Shawe-Taylor and Cristianini (2004). This
ability can be empirically evaluated on some test sets, but for many algo-
rithms there exist theoretical probabilistic upper bounds; see, for instance,
Agarwal and Niyogi (2009). Indeed, one of the main assumptions in the
supervised learning context is that the observed data are samples of a prob-
ability distribution which is fixed, but unknown. However, once the problem
formulation has been chosen, the generalization properties can still depend
on the algorithm to be used for the problem solution as long as this so-
lution is approximated to a low accuracy, as is common in the Machine
Learning context; see, for instance, the discussion in Bennett and Parrado-
Hernández (2006).

Another well-known consideration, relevant from the numerical viewpoint,
is that badly scaled data easily lead to instability and ill-conditioning of the
problem being solved, most often in the cases of a highly nonlinear kernel
and/or large numbers of data points, because of accumulation of round-
off errors. For these reasons, before attempting the training process it is
often advisable to scale the data into some range, such as [−1, +1]; see,
for example, Chang and Lin (2001). Moreover, other kinds of data pre-
processing are sometimes used to facilitate the training process, such as
the removal of duplicated data points, no matter if they have the same or
different labels, to meet the requirement of L1QD convergence theorems;
see, for instance, Lin (2001a, 2001b, 2002), Hush and Scovel (2003) and
Hush et al. (2006). However, we have not used such pre-processing in our
experiments.

It is also worthwhile to describe our experience in choosing the parameter
σ for the Gaussian kernel, since a sensible choice may be the difference be-
tween a successful solution, and the algorithm failing. We have observed in
the MNIST subsets that setting σ = 1 gives solutions in which #SVs = m.

152 R. Fletcher and G. Zanghirati

This makes the problems intractable, and also suggests that the classifica-
tion will be unsatisfactory because all points are on the boundary of the
classification. Moreover, we have observed that only two pivots per outer
iteration are detected, which leads to a large total number of outer itera-
tions. We also observed similar behaviour on other test sets when σ is badly
chosen. A possible explanation may be that the effective range of influence
of the Gaussians is not well matched to the typical separation of the data.
Too small a value of σ leads to almost no overlap between the Gaussians,
and too large a value leads to conflict between all points in the data set,
both of which may be undesirable. This is clearly a problem-dependent
issue: for instance, in the chessboard problems σ = 1 seems to be about the
correct radius in which the Gaussians have influence.

9. Conclusion

Much has been written over the years on the subject of binary separation
and SVMs. Theoretical and probabilistic properties have been investigated
and software codes for solving large-scale systems have been developed. Our
aim in this paper has been to look afresh at the foundations of this vast body
of work, based as it is to a very large extent on a formulation involving the
convex L1-dual QP (2.9). We are particularly concerned about its inabil-
ity to directly solve simple linear problems when the data are separable,
particularly when weakly separable or nearly so.

Now (2.9) arises, as we have explained, from a transformation of a more
fundamental standard problem (2.2), which is an NLP problem. When the
problem is separable, an equivalent convex QP problem (2.7) is obtained.
In order to get answers for non-separable problems, L1 penalties are intro-
duced, leading to the dual (2.9). Our aim has been to consider solving the
(primal) SP directly. In the past the nonlinear constraint wT w = 1 has
been a disincentive to this approach. We have shown that an SQP-like ap-
proach is quite effective, and has some unusual features (for NLP) in that
feasibility is maintained, monotonic progress to the solution is proved, and
termination at the solution is observed.

However, all this material is relevant to the context of separation by a
linear hyperplane. In practice this is not likely to be satisfactory, and we
have to take on nonlinear SVM ideas. We have described how this ingenious
concept arises and we have shown how it readily applies in a primal setting,
as against the more common dual setting. Our attention has focused only
on the use of a Gaussian kernel, although other kernels are possible and
have been used. For the Gaussian kernel with distinct data, a separable
solution can always be obtained. At first sight this seems to suggest that it
would be quite satisfactory to solve problems like the SP (2.2) or the convex
QPs (2.6) and (2.8), which do not resort to the use of penalties. This is true

Binary separation and training SVMs 153

for ‘good data’ for which an exact separation might be expected. However,
if the training set contains instances which are of uncertain labelling or are
mislabelled, then the exact separation provides a very contorted separation
surface and is undesirable. Now the L1QD approach is successful insofar as
it provides answers which identify certain points as being misclassified or of
uncertain classification. Our concern is that these answers are obtained by
optimizing a function which weights the L1 penalties relative to the term
1
2wT w, which has arisen as an artifact of the transformation of the SP to the
CQP in Section 2, and hence seems (at least from the numerical optimization
point of view) artificial and lacking in meaning (although Vapnik (1999)
assigns a probabilistic meaning in his structural risk minimization theory).
Choice of the weighting parameter seems to need an ad hoc process, guided
primarily by the extent to which the resulting separation looks ‘reasonable’.
Moreover, for very large problems, the L1QD problem can only be solved
approximately, adding another degree of uncertainty. At least the primal
approach has the benefit of finding feasible approximate solutions. We hope
to address these issues in future work, for example by using L1 penalties in
different ways as in (7.1).

For very large SVM problems (the usual case) the kernel matrix K is
a huge dense matrix, and this presents a serious computational challenge
when developing software. In some way or another the most meaningful
information in K must (possibly implicitly) be extracted. Our approach
has been via the use of low-rank Cholesky factors, K ≈ UT U , which is
particularly beneficial in a primal context, leading to a significant reduction
in the number of primal variables. We have suggested a method of choosing
pivots which has proved effective when the problems are not too large.
However, when the factor U tends towards being rank-deficient, we see
signs of ill-conditioning becoming apparent. Again, we hope to address
these issues in future work.

Acknowledgements

The authors are extremely grateful to Professor Luca Zanni and Dr Thomas
Serafini of the University of Modena and Reggio-Emilia (Italy) for valuable
discussions and suggestions.

REFERENCES

S. Agarwal and P. Niyogi (2009), ‘Generalization bounds for ranking algorithms
via algorithmic stability’, J. Mach. Learn. Res. 10, 441–474.

K. P. Bennett and E. Parrado-Hernández (2006), ‘The interplay of optimization
and machine learning research’, J. Mach. Learn. Res. 7, 1265–1281.

A. Bordes, S. Ertekin, J. Weston and L. Bottou (2005), ‘Fast kernel classifiers with
online and active learning’, J. Mach. Learn. Res. 6, 1579–1619.

154 R. Fletcher and G. Zanghirati

B. E. Boser, I. Guyon and V. N. Vapnik (1992), A training algorithm for optimal
margin classifiers. In Proc. 5th Annual ACM Workshop on Computational
Learning Theory (D. Haussler, ed.), ACM Press, Pittsburgh, pp. 144–152.

L. Bottou and C.-J. Lin (2007), Support vector machine solvers. In Large Scale
Kernel Machines (L. Bottou, O. Chapelle, D. DeCoste and J. Weston, eds),
The MIT Press, pp. 301–320.

C. J. Burges and B. Schölkopf (1997), Improving the accuracy and speed of sup-
port vector machines. In Advances in Neural Information Processing Systems,
Vol. 9, The MIT Press, pp. 375–381.

C. J. C. Burges (1998), ‘A tutorial on support vector machines for pattern recog-
nition’, Data Min. Knowl. Discovery 2, 121–167.

A. Caponnetto and L. Rosasco (2004), Non standard support vector machines
and regularization networks. Technical report DISI-TR-04-03, University of
Genoa, Italy.

B. Catanzaro, N. Sundaram and K. Keutzer (2008), Fast support vector machine
training and classification on graphics processors. In Proc. 25th International
Conference on Machine Learning, Helsinki, Finland, pp. 104–111.

C.-C. Chang and C.-J. Lin (2001), LIBSVM: A library for support vector machines.
www.csie.ntu.edu.tw/˜cjlin/libsvm

C.-C. Chang, C.-W. Hsu and C.-J. Lin (2000), ‘The analysis of decomposition
methods for support vector machines’, IEEE Trans. Neural Networks 11,
1003–1008.

E. Chang, K. Zhu, h. Wang, H. Bai, J. Li, Z. Qiu and H. Cui (2008), Parallelizing
support vector machines on distributed computers. In Advances in Neural
Information Processing Systems, Vol. 20, The MIT Press, pp. 257–264.

O. Chapelle (2007), ‘Training a support vector machine in the primal’, Neural
Comput. 19, 1155–1178.

P.-H. Chen, R.-E. Fan and C.-J. Lin (2006), ‘A study on SMO-type decomposi-
tion methods for support vector machines’, IEEE Trans. Neural Networks
17, 893–908.

R. Collobert and S. Bengio (2001), ‘SVMTorch: Support vector machines for large-
scale regression problems’, J. Mach. Learn. Res. 1, 143–160.

N. Cristianini and J. Shawe-Taylor (2000), An Introduction to Support Vector
Machines and other Kernel-Based Learning Methods, Cambridge University
Press.

F. Cucker and S. Smale (2001), ‘On the mathematical foundations of learning’,
Bull. Amer. Math. Soc. 39, 1–49.

F. Cucker and S. Smale (2002), ‘Best choices for regularization parameter in learn-
ing theory: On the bias-variance problem’, Found. Comput. Math. 2, 413–428.

F. Cucker and D. X. Zhou (2007), Learning Theory: An Approximation Theory
Viewpoint, Cambridge University Press.

E. De Vito, L. Rosasco, A. Caponnetto, U. De Giovannini and F. Odone (2005),
‘Learning from examples as an inverse problem’, J. Mach. Learn. Res. 6,
883–904.

E. De Vito, L. Rosasco, A. Caponnetto, M. Piana and A. Verri (2004), ‘Some
properties of regularized kernel methods’, J. Mach. Learn. Res. 5, 1363–1390.

Binary separation and training SVMs 155

J.-X. Dong, A. Krzyzak and C. Y. Suen (2003), A fast parallel optimization
for training support vector machine. In Proc. 3rd International Conference
on Machine Learning and Data Mining (P. Perner and A. Rosenfeld, eds),
Vol. 2734 of Lecture Notes in Artificial Intelligence, Springer, pp. 96–105.

J.-X. Dong, A. Krzyzak and C. Y. Suen (2005), ‘Fast SVM training algorithm with
decomposition on very large data sets’, IEEE Trans. Pattern Anal. Mach.
Intelligence 27, 603–618.

P. Drineas and M. W. Mahoney (2005), ‘On the Nyström method for approximating
a Gram matrix for improved kernel-based learning’, J. Mach. Learn. Res.
6, 2153–2175.

I. Durdanovic, E. Cosatto and H.-P. Graf (2007), Large-scale parallel SVM imple-
mentation. In Large Scale Kernel Machines (L. Bottou, O. Chapelle, D. De-
Coste and J. Weston, eds), The MIT Press, pp. 105–138.

T. Evgeniou, M. Pontil and T. Poggio (2000), ‘Regularization networks and support
vector machines’, Adv. Comput. Math. 13, 1–50.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang and C.-J. Lin (2008), ‘LIB-
LINEAR: A library for large linear classification’, J. Mach. Learn. Res. 9,
1871–1874.

M. C. Ferris and T. S. Munson (2002), ‘Interior-point methods for massive support
vector machines’, SIAM J. Optim. 13, 783–804.

S. Fine and K. Scheinberg (2001), ‘Efficient SVM training using low-rank kernel
representations’, J. Mach. Learn. Res. 2, 243–264.

S. Fine and K. Scheinberg (2002), INCAS: An incremental active set method for
SVM. Technical report, IBM Research Labs, Haifa, Israel.

R. Fletcher (1987), Practical Methods of Optimization, 2nd edn, Wiley, Chichester.
R. Fletcher (1996–2007), BQPD: Linear and quadratic programming solver.

www-new.mcs.anl.gov/otc/Guide/SoftwareGuide/Blurbs/bqpd.html
V. Franc and S. Sonnenburg (2008a), LIBOCAS: Library implementing OCAS

solver for training linear SVM classifiers from large-scale data.
cmp.felk.cvut.cz/˜xfrancv/ocas/html

V. Franc and S. Sonnenburg (2008b), Optimized cutting plane algorithm for sup-
port vector machines. In Proc. 25th International Conference on Machine
Learning, Helsinki, Finland, Vol. 307, ACM Press, New York, pp. 320–327.

E. M. Gertz and J. D. Griffin (2005), Support vector machine classifiers for large
data sets. Technical report, Mathematics and Computer Science Division,
Argonne National Laboratory, USA.

D. Goldfarb and K. Scheinberg (2004), ‘A product-form cholesky factorization
method for handling dense columns in interior point methods for linear pro-
gramming’, Math. Program. Ser. A 99, 1–34.

H. P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic and V. N. Vapnik (2005), Parallel
support vector machines: The Cascade SVM. In Advances in Neural Infor-
mation Processing Systems (L. Saul, Y. Weiss and L. Bottou, eds), Vol. 17,
The MIT Press, pp. 521–528.

P. J. F. Groenen, G. Nalbantov and J. C. Bioch (2007), Nonlinear support vector
machines through iterative majorization and I-splines. In Advances in Data
Analysis, Studies in Classification, Data Analysis, and Knowledge Organiza-
tion, Springer, pp. 149–161.

156 R. Fletcher and G. Zanghirati

P. J. F. Groenen, G. Nalbantov and J. C. Bioch (2008), ‘SVM-Maj: A majorization
approach to linear support vector machines with different hinge errors’, Adv.
Data Analysis and Classification 2, 17–43.

T. Hastie, R. Tibshirani and J. Friedman (2001), The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction, Springer.

R. Herbrich (2002), Learning Kernel Classifiers. Theory and Algorithms, The MIT
Press.

D. Hush and C. Scovel (2003), ‘Polynomial-time decomposition algorithms for sup-
port vector machines’, Machine Learning 51, 51–71.

D. Hush, P. Kelly, C. Scovel and I. Steinwart (2006), ‘QP algorithms with guar-
anteed accuracy and run time for support vector machines’, J. Mach. Learn.
Res. 7, 733–769.

T. Joachims (1999), Making large-scale SVM learning practical. In Advances in
Kernel Methods: Support Vector Learning (B. Schölkopf, C. J. C. Burges and
A. Smola, eds), The MIT Press, pp. 169–184.

T. Joachims (2006), Training linear SVMs in linear time. In Proc. 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Philadelphia, ACM Press, New York, pp. 217–226.

S. S. Keerthi and D. M. DeCoste (2005), ‘A modified finite Newton method for
fast solution of large-scale linear SVMs’, J. Mach. Learn. Res. 6, 341–361.

S. S. Keerthi and E. G. Gilbert (2002), ‘Convergence of a generalized SMO algo-
rithm for SVM classifier design’, Machine Learning 46, 351–360.

S. S. Keerthi, O. Chapelle and D. M. DeCoste (2006), ‘Building support vector
machines with reduced classifier complexity’, J. Mach. Learn. Res. 7, 1493–
1515.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya and K. R. K. Murthy (2001),
‘Improvements to Platt’s SMO algorithm for SVM classifier design’, Neural
Comput. 13, 637–649.

B. Kulis, M. Sustik and I. Dhillon (2006), Learning low-rank kernel matrices. In
Proc. 23rd International Conference on Machine Learning: ICML, pp. 505–
512.

Y. LeCun and C. Cortes (1998), The MNIST database of handwritten digits.
www.research.att.com/˜yann/ocr/mnist

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner (1998), ‘Gradient-based learning
applied to document recognition’, 86, 2278–2324.

Y.-J. Lee and O. L. Mangasarian (2001a), RSVM: Reduced support vector ma-
chines. In Proc. 1st SIAM International Conference on Data Mining, Chicago,
April 5-7, 2001, SIAM, Philadelphia, pp. 1–16.

Y.-J. Lee and O. L. Mangasarian (2001b), ‘SSVM: A smooth support vector ma-
chine for classification’, Comput. Optim. Appl. 20, 5–22.

C.-J. Lin (2001a), Linear convergence of a decomposition method for support vector
machines. Technical report, Department of Computer Science and Informa-
tion Engineering, National Taiwan University, Taipei, Taiwan.

C.-J. Lin (2001b), ‘On the convergence of the decomposition method for support
vector machines’, IEEE Trans. Neural Networks 12, 1288–1298.

C.-J. Lin (2002), ‘Asymptotic convergence of an SMO algorithm without any as-
sumptions’, IEEE Trans. Neural Networks 13, 248–250.

Binary separation and training SVMs 157

O. L. Mangasarian (2000), Generalized support vector machines. In Advances in
Large Margin Classifiers, The MIT Press, pp. 135–146.

O. L. Mangasarian (2002), ‘A finite Newton method for classification’, Optim.
Methods Software 17, 913–939.

O. L. Mangasarian (2006), ‘Exact 1-norm support vector machines via uncon-
strained convex differentiable minimization’, J. Mach. Learn. Res. 7, 1517–
1530.

O. L. Mangasarian and D. R. Musicant (2001), ‘Lagrangian support vector ma-
chines’, J. Mach. Learn. Res. 1, 161–177.

E. Osuna, R. Freund and F. Girosi (1997), Training support vector machines:
An application to face detection. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition: CVPR97, IEEE Computer Society, New
York, pp. 130–136.

J. C. Platt (1998), Fast training of support vector machines using sequential min-
imal optimization. In Advances in Kernel Methods: Support Vector Learning
(B. Schölkopf, C. Burges and A. Smola, eds), The MIT Press, pp. 185–210.

J. C. Platt (1999), Using analytic QP and sparseness to speed training of sup-
port vector machines. In Advances in Neural Information Processing Systems
(M. Kearns et al., eds), Vol. 11, The MIT Press, pp. 557–563.

M. Prato, L. Zanni and G. Zanghirati (2007) ‘On recent machine learning algo-
rithms for brain activity interpretation’, Applied Computational Electromag-
netics Society Journal 22, 1939–1946.

K. Scheinberg (2006), ‘An efficient implementation of an active set method for
SVMs’, J. Mach. Learn. Res. 7, 2237–2257.

B. Schölkopf and A. J. Smola (2002), Learning with Kernels, The MIT Press.
T. Serafini and L. Zanni (2005), ‘On the working set selection in gradient

projection-based decomposition techniques for support vector machines’, Op-
tim. Methods Software 20, 583–596.

T. Serafini, G. Zanghirati and L. Zanni (2005), ‘Gradient projection methods for
quadratic programs and applications in training support vector machines’,
Optim. Methods Software 20, 353–378.

J. Shawe-Taylor and N. Cristianini (2004), Kernel Methods for Pattern Analysis,
Cambridge University Press.

J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor and J. Vandewalle
(2002), Least Squares Support Vector Machines, World Scientific, Singapore.

C. H. Teo, Q. V. Le, A. Smola and S. Vishwanathan (2009), BMRM: Bundle
methods for regularized risk minimization.
users.rsise.anu.edu.au/˜chteo/BMRM.html

I. W. Tsang, J. T. Kwok and P.-M. Cheung (2005), ‘Core vector machines: Fast
SVM training on very large data sets’, J. Mach. Learn. Res. 6, 363–392.

V. N. Vapnik (1998), Statistical Learning Theory, Wiley, New York.
V. N. Vapnik (1999), The Nature of Statistical Learning Theory , Information Sci-

ence and Statistics, Springer.
C. K. Williams and M. Seeger (2001), Using the Nyström method to speed up kernel

machines. In Advances in Neural Information Processing Systems, Vol. 13,
The MIT Press, pp. 682–688.

158 R. Fletcher and G. Zanghirati

K. Woodsend and J. Gondzio (2007a), Exploiting separability in large scale sup-
port vector machine training. Technical report MS-07-002, The University of
Edinburgh.

K. Woodsend and J. Gondzio (2007b), Parallel support vector machine training
with nonlinear kernels. Technical report MS-07-007, The University of Edin-
burgh.

K. Woodsend and J. Gondzio (2009), ‘Hybrid MPI/OpenMP parallel linear support
vector machine training’, J. Mach. Learn. Res. 20, 1937–1953.

M. Wyganowski (2008), Classification algorithms on the cell processor. PhD the-
sis, Kate Gleason College of Engineering, Rochester Institute of Technology,
Rochester, NY, USA. http://hdl.handle.net/1850/7767

L. Zanni (2006), ‘An improved gradient projection-based decomposition technique
for support vector machines’, Comput. Management Sci. 3, 131–145.

L. Zanni, T. Serafini and G. Zanghirati (2006), ‘Parallel software for training large-
scale support vector machines on multiprocessors systems’, J. Mach. Learn.
Res. 7, 1467–1492. http://dm.unife.it/gpdt

